

We shall take a closer look at these steps and the terminology you will need to understand before you start a
 science lab.

The Scientific

 Method involves a series of steps that are used toinvestigate a natural
occurrence.

Steps of the

Scientific Method

1. Problem/Question: the
question you are trying to answer.

Steps of the
 Scientific Method

2. Observation/Research: CET
BACKGROUND
INFORMATION-BECOME
AN EXPERT.

Do you remember the

 next step?

Steps of the
 Scientific Method

3. Formulate a Hypothesis: a likely explanation of the problem.
Example: If soil temperatures rise, then plant growth will increase.

Steps of the

Scientific Method

- The hypothesis includes the variables. Manipulated
variable
(independent)
- What you are terting and what

Steps of the Scientific Method

4. Experiment: TEST THE HYPOTHESIS.

$$
\begin{gathered}
\text { Steps of the } \\
\text { Scientific Method }
\end{gathered}
$$

5. Collect and Organize Data: Collect the data and put it in a data table during the experiment. Make a graph of the results.

$$
\begin{gathered}
\text { Steps of the } \\
\text { Scientific Method }
\end{gathered}
$$

6. Conclusion: Tell what you learned during the experiment. State how variables might have influenced the outcome of the experiment. Tell what you would do differently next time.

Think you can name all 6
 steps?

 Collect and Organize data Proble Formı Conclusion

scientific Method

> • PROBLEM/QUESTION - OBSERVATION/RESEARCH

- HYPOTHESIS- WHICH INCLUDES THE VARIABLES - EXPERIMENT
- COLLECT AND ORGANIZE DATA CONCLUSION

Let's puit our knowledge of the Scientific Method to a realistic example that includes some of the terms you'll be needing to use and understand.

- Gut out the pieces of Whe scientiric method and pu世 whem In order.

- Read the experiment

 steps to gain cin understanding of how Ho relate each step to a REAL Iab.
Problem/Question

John watches his
grandmother bake bread. He ask his
grandmother what makes the bread rise.
She explains that yeast releases a gas as it feeds on sugar.

Problem/Question

John wonders if the amount of sugar used in the recipe will affect the size of the bread loaf?

Caution!

Be careful how you use effect and affect.

Effect is usually a noun and affect, a verb.
" The effect of sugar amounts on the rising of bread."
"How does sugar affect the rising of bread?"

Observation/Research

John researches the areas of baking and fermentation and tries to come up with a way to test his question. He keeps all of his information on this

topic in a journal.

John talks with his

 teacher and she gives him a Experimental Design Diagram to help him set up his investigation.

General Layout for an Experimental Design Diagram

Title
The Effect of \qquad (Independent Varisible)
on \qquad (Dependent Variables)

HYPOTHESIS
If \qquad (planned change in independent variable),
then \qquad (predicted change in dependent variables).

Independent Variable

Levels of Independent Variable and Numbers of Repeated TriALS

Level 1 (Control)	Level 2	Level 3	Level 4
Number of trials	Number of trials	Number of trials	Number of trials

Dependent Variable and How Measured

Constants

1.
2.
3.
4.

Formulate a Hypothesis

After talking with his teacher and
conducting further research, he comes up with a hypothesis. "If more sugar is added,
 then the bread will rise higher."

Hypothesis

The hypothesis is an educated guess about the relationship between the independent and dependent variables.
Note: These variables will be defined in the next few slides.

Do you know the difference

 between the independent and dependent variables?

Independent Variable

The independent, or

 manipulated variable, is afactor that's intentionally varied by the experimenter.
John is going to use $25 \mathrm{~g} ., 50 \mathrm{~g}$., $100 \mathrm{~g} ., 250 \mathrm{~g} ., 500 \mathrm{~g}$. of sugar in his experiment.

Dependent Variable

The dependent, or responding variable, is the factor that may change as a result of changes made in the independent variable.
In this case, it would be the size of the loaf of bread.

Experiment

His teacher helps him come up with a
procedure and list of needed materials.
She discusses with John how to determine the control

group.

Control Group

In a scientific experiment, the control is the group that serves as the standard of comparison. The control group may be a "no treatment" or an "experimenter selected" group.

Control Group

The control group is exposed to the same conditions as the experimental group, except for the variable being tested.
All experiments should have a control group.

Control Group

Because his grandmother
always used 50 g . of sugar in her recipe, John is going to use that amount in his control group.

Constants

John's teacher reminds him to keep all other factors the same so that any observed changes in the bread can be attributed to the variation in the amount of sugar.

Constants

The constants in an experiment are all the factors that the
experimenter attempts to keep the same.

Can you think of some constants for this experiment?

Constants

They might include:

Other ingredients to the bread recipe, oven used, rise time, brand of ingredients, cooking time, type of pan used, air temperature and humidity where the bread was rising, oven temperature, age of the yeast...

Experiment

John writes out his procedure for his

 experiment along with a materials list in his journal. He has both of these checked by his teacher where she checks for any safety concerns.
Trials

Trials refer to replicate groups that are exposed to the same conditions in an experiment.

John is going to test each sugar variable 3 times.

Collect and Analyze Results

 John comes up with a table he can use to record his data. John gets all his materials together and carries out his experiment.
Size of Baked Bread (LxWxH) cm ${ }^{3}$

	Size of Bread Loaf (cm $\left.{ }^{3}\right)$			Trials
Amt. of Sugar (g.)	1	2	3	Average Size (cm $)^{3}$
25	768	744	761	758
50 Control group	1296	1188	1296	1260
100	1188	1080	1080	1116
250	672	576	588	612
500	432	504	360	432

Collect and Analyze Results

John examines his

 data and notices that his control worked the best in this experiment, but not significantly better than 100 g . of sugar.

Conclusion

John rejects his
hypothesis, but decides to re-test using sugar amounts between 50 g . and 100 g .

Experiment

Once again, John

 gathers his materials and carries out his experiment.Here are the results.

Can you tell which group did the best?

Size of Baked Bread (LxWxH) cm ${ }^{3}$

	Size of Bread Loaf (cm $\left.{ }^{3}\right)$			
Amt. of Sugar (g.)	1	2	3	Average Size (cm³)
50 Control group	1296	1440	1296	1344
60	1404	1296	1440	1380
70	1638	1638	1560	1612
80	1404	1296	1296	1332
90	1080	1200	972	1084

Conclusion

John finds that 70 g . of sugar produces the largest loaf. His hypothesis is accepted.

Communicate the Results

John tells his

grandmother about his findings and
prepares to present his project in
Science class.

Observe your

world and come

